本文约2000字,建议阅读5分钟
GPT-3、Stable Diffusion 一起助攻,让模型秒变 PS 高手,改图随心所欲。
AI 可以完全按照甲方意愿修图?GPT-3、Stable Diffusion 一起助攻,让模型秒变 PS 高手,改图随心所欲。
扩散模型大火之后,很多人将注意力放到了如何利用更有效的 prompt 生成自己想要的图像。在对于一些 AI 作画模型的不断尝试中,人们甚至总结出了让 AI 好好出图的关键词经验:
的变分自编码器的潜空间中操作来提高扩散模型的效率和质量。
对于一个图像 x,扩散过程向编码的 latent
中添加噪声,它产生一个有噪声的 latent z_t,其中噪声水平随时间步 t∈T 而增加。研究者学习一个网络
此前,曾有研究(Wang et al.)表明,对于图像翻译(image translation)任务,尤其是在成对训练数据有限的情况下,微调大型图像扩散模型优于从头训练。因此在新研究中,作者使用预训练的 Stable Diffusion checkpoint 初始化模型的权重,利用其强大的文本到图像生成能力。
为了支持图像调节,研究人员向第一个卷积层添加额外的输入通道,连接 z_t 和
。扩散模型的所有可用权重都从预训练的 checkpoint 初始化,同时在新添加的输入通道上运行的权重被初始化为零。作者在这里重用最初用于 caption 的相同的文本调节机制,而没有将文本编辑指令 c_T 作为输入。
实验结果
在下面这些图中,作者展示了他们新模型的图像编辑结果。这些结果针对一组不同的真实照片和艺术品。新模型成功地执行了许多具有挑战性的编辑,包括替换对象、改变季节和天气、替换背景、修改材料属性、转换艺术媒介等等。
相关文章
猜你喜欢
成员 网址收录40407 企业收录2984 印章生成245673 电子证书1091 电子名片63 自媒体77176